An optimal multiple root-finding method of order three
نویسندگان
چکیده
منابع مشابه
An Efficient Family of Root-Finding Methods with Optimal Eighth-Order Convergence
We derive a family of eighth-order multipoint methods for the solution of nonlinear equations. In terms of computational cost, the family requires evaluations of only three functions and one first derivative per iteration. This implies that the efficiency index of the present methods is 1.682. Kung and Traub 1974 conjectured that multipoint iteration methods without memory based on n evaluation...
متن کاملA new family of four-step fifteenth-order root-finding methods with high efficiency index
In this paper a new family of fifteenth-order methods with high efficiency index is presented. This family include four evaluations of the function and one evaluation of its first derivative per iteration. Therefore, this family of methods has the efficiency index which equals 1.71877. In order to show the applicability and validity of the class, some numerical examples are discussed.
متن کاملAn E cient Method for Finding an Optimal Bi - Decomposition
This paper presents a new e cient method for nding an \optimal" bi-decomposition form of a logic function. A bi-decomposition form of a logic function is the form: f(X) = (g1(X ); g2(X )). We call a bi-decomposition form optimal when the total number of variables in X and X is the smallest among all bi-decomposition forms of f . This meaning of optimal is adequate especially for the synthesis o...
متن کاملAn optimal first order method based on optimal quadratic averaging
In a recent paper, Bubeck, Lee, and Singh introduced a new first order method for minimizing smooth strongly convex functions. Their geometric descent algorithm, largely inspired by the ellipsoid method, enjoys the optimal linear rate of convergence. We show that the same iterate sequence is generated by a scheme that in each iteration computes an optimal average of quadratic lower-models of th...
متن کاملTHIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1994
ISSN: 0377-0427
DOI: 10.1016/0377-0427(94)00044-1